

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	python-memcached2 0.1 documentation

python-memcached2

python-memcached2 is a next-generation implementation re-implementation of
the python-memcached module. The primary goals are to get rid of some
baggage, improve testability/maintainability/performance, and support
Python 3. This codebase is regularly tested against Python 2.7 and Python
3.3.

The high level interface is dict-like:
ExceptionsAreMissesMapping. It looks much like
a dictionary but the back-end storage is memcache servers.

The low level Memcache class is complete and
documented, see Memcache Examples for examples
of use.

Documentation Index

	What’s New in python-memcached2

	Exception as Misses Mapping
	Introduction

	Examples

	Object Documentation

	Exception as Misses Mapping
	Introduction

	Examples

	Object Documentation

	Hasher Routines

	Selector Routines

	Reconnector Routines

	String-like Memcache Value Object

	Dictionary-like Memcache Value Object

	Low-Level Memcache() Interface
	Introduction

	Examples

	Object Documentation

	Low-Level ServerConnection() Interface

	python-memcached2 Exceptions
	Overview

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

What’s New in python-memcached2

	Renamed SelectorAvailableServers to SelectorRehashDownServers.

Wed Sep 04, 2013

	I’m going to tag this as 0.3, because it’s at a pretty functional state,
and I’m going to stat breaking things to work on separating the server
connecting and re-connecting from the server selection.

Sat Aug 31, 2013

	I have finished the implementation of set_multi(), but it could use
some more tests, particularly those verifying what happens on bad
server responses.

Mon Aug 26, 2013

	I have completed the implementation of send_multi() and it passes a
basic test. Need to decide what I want the return to be, and do more
tests, but it’s on its way.

Mon Jun 12, 2013

	Added a new Selector,
SelectorFractalSharding,
and removed the
SelectorRestirOnDownServer.
The new Selector improves on the old one in pretty much every way, and
is the default for when more than 2 servers are listed.

Mon Jun 10, 2013

	Tagging as 0.2 as the functionality here is usable and stabilized and I
want to start working on some significant changes that may break things
for a while.

Sun Jun 09, 2013

	Added SelectorConsistentHashing that implements
this algorithm for server selection.

Sun Jun 08, 2013

	Removed SelectorRehashOnDownServer and replaced
it with the better
SelectorRestirOnDownServer.

Tue Jun 04, 2013

	Fixing a bug if Memcache(selector+XXX) is used, hasher was not being
set.

	Created SelectorRehashOnDownServer which will hash to the same server,
unless that server is down in which case it will rehash among only the
up servers.

Wed May 28, 2013

	Adding memcached2.Memcache.delete_all() and
memcached2.ValueSuperStr.sdelete_allet().

Wed May 27, 2013

	SelectorAvailableServers now can flush all servers when the topology
changes. That’s the situation it is most suited for, though it’s also
ideal for 2 server clusters.

Wed May 25, 2013

	Added get_multi which can get multiple keys at once.

Wed May 22, 2013

	Memcache now has a get_multi() method that will get multiple keys at
once.

Wed May 20, 2013

	Memcache.cache() now takes varargs and kwargs, optionally, which will
be passed to the compute function.

Wed May 19, 2013

	Memcache.cache() added which will call a function on a cache miss,
then put the result in the cache.

Wed May 18, 2013

	Now have a ExceptionsAreMissesMemcache() class for lower-level access
that treats exceptions as misses.

Wed May 15, 2013

	ValueSuperStr can now do a CAS refresh on
memcached2.ValueSuperStr.set().

Wed May 8, 2013

	MemcacheValue is now called ValueSuperStr, and it is no longer the
default return type in Memcache(). It can be defined by passing
ValueMemcache to Memcache() as the “value_wrapper”. There’s also
a ValueDictionary now.

	Adding ValueDictionary class.

	Memcache() class no longer returns MemcacheValue class.
It returns a normal string, unless you have specified a value_wrapper
attribute during the creation of the Memcache object.

Tue May 7, 2013

	Adding MANIFEST.in file.

	Adding CASFailure to MemcacheValue methods.

Fri May 3, 2013

	I did a short performance test against the python-memcached
library that this is meant to replace. This new module is around 10%
faster (using the Memcache() class) at retrieving 10 byte values, and
16% faster at 1KB values. I was expecting more, but I also haven’t
done any performance tuning. If I just return normal strings instead
of ValueSuperStr, that goes up to 23% faster, so that may be a point
of optimization.

	Adding remaining methods to MemcacheValue.

Thu May 2, 2013

	MemcacheValue now has “set()” method.

Wed May 1, 2013

	I’m tagging a 0.2 but still not going to release to pypi
yet. Server failure testing, related to ExceptionsAreMissesMapping,
have located several exceptions that weren’t being caught and
translated into local module exceptions. Current functionality is
solid, but I want to add a MemcacheCASValue class, which is kind of
an API change.

	Improving Python 2 BrokenPipeError

	Catching more exceptions, more tests.

Added more extensive testing to ExceptionsAsMissesMapping, including
in the cases where the server disconnects. Through that, found places
where more exceptions needed to be caught.

Tue Apr 30, 2013

	Trapping ServerDisconnected exception.

Mon Apr 29, 2013

	ObliviousMapping renamed ExceptionsAreMissesMapping

ExceptionsAreMissesMapping suggested by Wes Winham. Thanks!

Sat Apr 27, 2013

	The module is usable, but if you do you
should expect that the interfaces may change. The high level
Memcache code is basically complete, documented,
and well tested.

	Bringing back KeyError because d.get() is preferable.

	Renaming ObliviousDict to ObliviousMapping.

Fri Apr 26, 2013

	Adding ObliviousDict() tests and fixing “in”.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Exception as Misses Mapping

Introduction

This is a subclass of Memcache which swallows
exceptions and treats them like misses. This is meant to allow code to
be a bit simpler, rather than catching all exceptions, you can just do
things like the below example.

Examples

Basic example:

>>> import memcached2
>>> mc = memcached2.ExceptionsAreMissesMemcache(('memcached://localhost/',))
>>> data = mc.get('key')
>>> if not data:
>>> data = [compute data]
>>> mc.set('key', data)
>>> [use data]

Object Documentation

	
class memcached2.ExceptionsAreMissesMemcache(servers, value_wrapper=None, selector=None, hasher=None, server_pool=None)

	A Memcache wrapper class which swallows
server exceptions, except in the case of coding errors. This is
meant for situations where you want to keep the code simple, and
treat cache misses, server errors, and the like as cache misses.
See memcached2.Memcache() for details of the use of this
class, exceptions to that are noted here.

The methods that are protected against exceptions are those
documented in this class. Everything should otherwise act like
a Memcache instance.

	Parameters:	
	servers (list) – One or more server URIs of the form:
“memcache://hostname[:port]/”

	value_wrapper (ValueSuperStr or
compatible object.) – (None) This causes values returned to be
wrapped in the passed class before being returned. For example
ValueSuperStr implements many useful
additions to the string return.

	selector (SelectorBase) – (None) This code implements the server selector
logic. If not specified, the default is used. The default
is to use SelectorFirst if only one
server is specified, and
SelectorRehashDownServers
if multiple servers are given.

	hasher (HasherBase) – (None) A “Hash” object which takes a key and returns
a hash for persistent server selection. If not specified, it
defaults to HasherZero if there is only
one server specified, or HasherCMemcache
otherwise.

	server_pool (ServerPool object.) – (None) A server connection pool. If not
specified, a global pool is used.

	
delete(*args, **kwargs)

	Remove this key from the server.

Exceptions are swallowed and treated as memcached misses.
See delete() for details on this
method. Changes from the base function are:

	Raises:	Exceptions are swallowed and treated a misses.

	
get(*args, **kwargs)

	Retrieve the specified key from a memcache server.

Exceptions are swallowed and treated as memcached misses.
See get() for details on this
method. Changes from the base function are:

	Returns:	None if no value or exception, String, or “value_wrapper”
as specified during object creation such as
~memcached2.ValueSuperStr.

	Raises:	Exceptions are swallowed and treated a misses.

	
set(*args, **kwargs)

	Update the value in the server.
See set() for details on this
method. Changes from the base function are:

Exceptions are swallowed and treated as memcached misses.
See set() for details on this
method. Changes from the base function are:

	Raises:	Exceptions are swallowed and treated a misses.

	
set_multi(*args, **kwargs)

	Update multiple values in the server.
See set_multi() for details on this
method. Changes from the base function are:

Exceptions are swallowed and treated as memcached misses.
See set() for details on this
method. Changes from the base function are:

	Raises:	Exceptions are swallowed and treated a misses.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Exception as Misses Mapping

Introduction

This is a dictionary-like interface to memcache, but it swallows
server exceptions, except in the case of coding errors. This is meant
for situations where you want to keep the code simple, and treat cache
misses, server errors, and the like as cache misses.

On the instantiation you specify the servers, and at that point it can be
accessed as a dictionary, including access, setting, and deleting keys.
See the examples for a demonstration.

For functionality beyond what you can get from the dictionary interface,
you need to use the memcache attribute, which is an
Memcache instance. See that documentation
for access to flusing servers, statistics, and other things not supported
by the mapping interface.

Note that NotImplementedException will be raised for situations
where there are code errors. So it’s recommended that you don’t just trap
these, either catch and log them, or just let them raise up so that
application users can report the bug.

Examples

Basic example:

>>> import memcached2
>>> mcd = memcached2.ExceptionsAreMissesMapping(('memcached://localhost/',))
>>> 'foo' in mcd
False
>>> mcd['foo'] = 'hello'
>>> 'foo' in mcd
True
>>> mcd['foo']
'hello'
>>> len(mcd)
1
>>> del(mcd['foo'])
>>> len(mcd)
0

Object Documentation

	
class memcached2.ExceptionsAreMissesMapping(servers, selector=None, hasher=None)

	A dictionary-like interface which swallows server exceptions.

This is a dictionary-like interface to memcache, but it swallows
server exceptions, except in the case of coding errors. This is
meant for situations where you want to keep the code simple, and
treat cache misses, server errors, and the like as cache misses.

See ExceptionsAreMissesMapping Introduction
and ExceptionsAreMissesMapping Examples for more information.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Hasher Routines

	
class memcached2.HasherBase

	Turn memcache keys into hashes, for use in server selection.

Normally, the python-memcached2 classes will automatically select a
hasher to use. However, for special circumstances you may wish to
use a different hasher or develop your own.

This is an abstract base class, here largely for documentation purposes.
Hasher sub-classes such as HasherZero and
HasherCMemcache, implement a hash method
which does all the work.

See hash() for details of implementing
a subclass.

	
hash(key)

	Hash a key into a number.

This must persistently turn a string into the same value. That value
is used to determine which server to use for this key.

	Parameters:	key (str) – memcache key

	Returns:	int – Hashed version of key.

	
class memcached2.HasherZero

	Hasher that always returns 0, useful only for
SelectorFirst.

	
hash(key)

	See memcached2.HasherBase.hash() for details of
this function.

	
class memcached2.HasherCMemcache

	Hasher compatible with the C memcache hash function.

	
hash(key)

	See memcached2.HasherBase.hash() for details of
this function.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Selector Routines

	
class memcached2.SelectorBase

	Select which server to use.

These classes implement a variety of algorithms for determining which
server to use, based on the key being stored.

The selection is done based on a key_hash, as returned by the
memcached2.HasherBase.hash() function.

Normally, the python-memcached2 classes will automatically pick a
selector to use. However, for special circumstances you may wish to
use a specific Selector or develop your own.

This is an abstract base class, here largely for documentation purposes.
Selector sub-classes such as SelectorFirst and
SelectorRehashDownServers, implement a select
method which does all the work.

See select() for details of implementing
a subclass.

	
select(server_uri_list, hasher, key, server_pool)

	Select a server bashed on the key_hash.

Given the list of servers and a hash of of key, determine which
of the servers this key is associated with on.

	Parameters:	
	server_uri_list (list of server URIs) – A list of the server URIs to select among.

	hasher (memcache2.HasherBase.hash().) – Hasher function, such as
memcache2.HasherBase.hash().

	key (str) – The key to hash.

	server_pool (ServerPool object.) – (None) A server connection pool. If not
specified, a global pool is used.

	Returns:	string – The server_uri to use.

	Raises:	NoAvailableServers

	
class memcached2.SelectorFirst

	Server selector that only returns the first server. Useful when there
is only one server to select amongst.

	
select(server_uri_list, hasher, key, server_pool)

	See memcached2.SelectorBase.select() for details of
this function.

	
class memcached2.SelectorRehashDownServers(hashing_retries=10)

	Select a server, if it is down re-hash up to hashing_retries times.

This was the default in the original python-memcached module. If the
server that a key is housed on is down, it will re-hash the key after
adding an (ASCII) number of tries to the key and try that server.

This is most suitable if you want to inter-operate with the old
python-memcache client.

If no up server is found after hashing_retries attempts,
memcached2.NoAvailableServers is raised.

	Parameters:	hashing_retries (int) – Retry hashing the key looking for another
server this many times.

	
select(server_uri_list, hasher, key, server_pool)

	See memcached2.SelectorBase.select() for details of
this function.

	
class memcached2.SelectorFractalSharding

	On a down server, re-partition that servers keyspace to other servers.

This uses an algorithm that basically maps every key in the keyspace to
a list of the servers that will answer queries for it. The first
available server in that list will be used. The list is such that
the keys that map to a server when it is up will get distributed across
other servers evenly, stabally, and predictably.

I called it Fractal because when a server is down you dig deeper and see a
new level of complexity in the keyspace mapping.

	
select(server_uri_list, hasher, key, server_pool)

	See memcached2.SelectorBase.select() for details of
this function.

	
class memcached2.SelectorConsistentHashing(total_buckets=None)

	Predictably select a server, even if its normal server is down.

This implements the Consistent Hash algorithm as
http://en.wikipedia.org/wiki/Consistent_hashing

This is done by splitting the key-space up into a number of buckets
(more than the number of servers but probably no more than the
number of servers squared). See Wikipedia for details on how this
algorithm operates.

The downside of this mechanism is that it requires building a fairly
large table at startup, so it is not suited to short lived code.
It also is fairly expensive to add and remove servers from the pool
(not implemented in this code). Note that it is NOT expensive to
fail a server, only to completely remove it.

	Parameters:	total_buckets (int) – How many buckets to create. Smaller values
decrease the startup overhead, but also mean that a down
server will tend to not evenly redistribute it’s load across
other servers. The default value of None means the default
value of the number of servers squared.

	
select(server_uri_list, hasher, key, server_pool)

	See memcached2.SelectorBase.select() for details of
this function.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Reconnector Routines

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

String-like Memcache Value Object

	
class memcached2.ValueSuperStr

	Wrapper around Memcache value results.

This acts as a string normally, containing the value read from the
server. However, it is augmented with additional attributes representing
additional data received from the server: flags, key, and
cas_unique (which may be None if it was not requested from the server).

If this is constructed with the memcache
ServerConnection instance, then additional
methods may be used to update the value via this object. If cas_unique
is given, these updates are done using the CAS value.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Dictionary-like Memcache Value Object

	
class memcached2.ValueDictionary(value, key, flags, cas_unique=None, memcache=None)

	Encode the response as a dictionary.

This is a simple dictionary of the result data from the memcache
server, including keys: “key”, “value”, “flags”, and “cas_unique”.
This is a way of getting additional data from the memcache server
for use in things like CAS updates.

Instantiate new instance.

	Parameters:	
	value (str) – The memcache value, which is the value of this
class when treated like a string.

	key (str) – The key associated with the value retrieved.

	flags (int) – flags associated with the value retrieved.

	cas_unique (int) – The cas_unique value, if it was queried, or
None if no CAS information was retrieved.

	memcache (ServerConnection) – The memcache server instance, used for future
operations on this key.

	Returns:	ValueSuperStr instance

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Low-Level Memcache() Interface

Introduction

This is a low-level interface to a group of memcache servers. This code
tends to either return the requested data, or raises an exception if the
data is not available or there is any sort of an error. If you want
high level control, this is probably the interface for you. However, if
you want something easy, like the old python-memcached module, you will
want to wait for the higher level interfaces to be implemented.

Examples

Basic get() and exception example:

>>> import memcached2
>>> memcache = memcached2.Memcache(('memcached://localhost/',))
>>> try:
... result = memcache.get('session_id')
... print('Got cached results: {0}'.format(repr(result)))
... except memcached2.NoValue:
... print('Cached value not available, need to recompute it')
...
Cached value not available, need to recompute it

Demonstrating set(),
get() and
ValueSuperStr:

>>> memcache.set('session_id', 'TEST SESSSION DATA')
>>> result = memcache.get('session_id')
>>> print('Got cached results: {0}'.format(repr(result)))
Got cached results: 'TEST SESSSION DATA'
>>> result.key
'session_id'
>>> result.flags
0

Example of get_multi() to retrieve multiple
keys quickly:

>>> memcache.set('foo', '1')
>>> memcache.set('bar', '2')
>>> result = memcache.get_multi(['foo', 'bar', 'baz'])
>>> result.get('foo')
'1'
>>> result.get('bar')
'2'
>>> result.get('baz')
None

Usage of
cache() to automatically cache values:

>>> numbers = range(10)
>>> calculate = lambda x: str(numbers.pop())
>>> memcache.flush_all()
>>> memcache.cache('foo', calculate)
'9'
>>> memcache.cache('foo', calculate)
'9'
>>> memcache.set('foo', 'hello')
>>> memcache.cache('foo', calculate)
'hello'
>>> memcache.flush_all()
>>> memcache.cache('foo', calculate)
'8'

Showing flags and expiration time and touch():

>>> memcache.set('foo', 'xXx', flags=12, exptime=30)
>>> result = memcache.get('foo')
>>> result
'xXx'
>>> result.key
'foo'
>>> result.flags
12
>>> import time
>>> time.sleep(30)
>>> result = memcache.get('foo')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "memcached2.py", line 411, in get
 raise NoValue()
memcached2.NoValue
>>> memcache.set('foo', 'bar', exptime=1)
>>> memcache.touch('foo', exptime=30)
>>> time.sleep(2)
>>> memcache.get('foo')
'bar'

Usage of replace(),
append(), and
prepend():

>>> memcache.replace('unset_key', 'xyzzy')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "memcached2.py", line 502, in replace
 self._storage_command(command, key)
 File "memcached2.py", line 945, in _storage_command
 raise NotStored()
memcached2.NotStored
>>> memcache.set('unset_key', 'old_data', exptime=30)
>>> memcache.replace('unset_key', 'xyzzy')
>>> memcache.get('unset_key')
'xyzzy'
>>> memcache.append('unset_key', '>>>')
>>> memcache.prepend('unset_key', '<<<')
>>> memcache.get('unset_key')
'<<<xyzzy>>>'

Example of using CAS (Check And Set) atomic operations:

>>> memcache.set('foo', 'bar')
>>> result = memcache.get('foo', get_cas=True)
>>> result.cas_unique
5625
>>> memcache.set('foo', 'baz', cas_unique=result.cas_unique)
>>> memcache.get('foo', get_cas=True)
'baz'
>>> memcache.set('foo', 'qux', cas_unique=result.cas_unique)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "memcached2.py", line 464, in set
 self._storage_command(command, key)
 File "memcached2.py", line 947, in _storage_command
 raise CASFailure()
memcached2.CASFailure
>>> memcache.get('foo', get_cas=True)
'baz'

Usage of
incr()/decr():

>>> memcache.incr('incrtest', 1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "memcached2.py", line 878, in incr
 return self._incrdecr_command(command, key)
 File "memcached2.py", line 915, in _incrdecr_command
 raise NotFound()
memcached2.NotFound
>>> memcache.set('incrtest', 'a')
>>> memcache.incr('incrtest', 1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "memcached2.py", line 878, in incr
 return self._incrdecr_command(command, key)
 File "memcached2.py", line 919, in _incrdecr_command
 raise NonNumeric()
memcached2.NonNumeric
>>> memcache.set('incrtest', '1')
>>> memcache.incr('incrtest', 1)
2
>>> memcache.decr('incrtest', 1)
1
>>> memcache.get('incrtest')
'1'

Statistics sample information:

>>> import pprint
>>> pprint.pprint(memcache.stats())
[{'accepting_conns': '1',
 'auth_cmds': 0,
 'auth_errors': 0,
 'bytes': 201,
 'bytes_read': 173542,
 'bytes_written': 516341,
 'cas_badval': 49,
 'cas_hits': 49,
 'cas_misses': 0,
 'cmd_flush': 1154,
 'cmd_get': 880,
 'cmd_set': 5778,
 'cmd_touch': '148',
 'conn_yields': 0,
 'connection_structures': 9,
 'curr_connections': 5,
 'curr_items': 3,
 'decr_hits': 49,
 'decr_misses': 48,
 'delete_hits': 49,
 'delete_misses': 49,
 'evicted_unfetched': 0,
 'evictions': 0,
 'expired_unfetched': 0,
 'get_hits': '681',
 'get_misses': '199',
 'hash_bytes': 262144,
 'hash_is_expanding': '0',
 'hash_power_level': 16,
 'incr_hits': 49,
 'incr_misses': 49,
 'libevent': '2.0.19-stable',
 'limit_maxbytes': 67108864,
 'listen_disabled_num': '0',
 'pid': 22356,
 'pointer_size': 32,
 'reclaimed': 0,
 'reserved_fds': 20,
 'rusage_system': 7.568473,
 'rusage_user': 8.904556,
 'threads': 4,
 'time': 1366722131,
 'total_connections': 1545,
 'total_items': 5634,
 'touch_hits': 98,
 'touch_misses': 50,
 'uptime': 370393,
 'version': '1.4.14'}]
>>> pprint.pprint(memcache.stats_settings())
[{'auth_enabled_sasl': 'no',
 'binding_protocol': 'auto-negotiate',
 'cas_enabled': True,
 'chunk_size': 48,
 'detail_enabled': False,
 'domain_socket': 'NULL',
 'evictions': 'on',
 'growth_factor': 1.25,
 'hashpower_init': 0,
 'inter': '127.0.0.1',
 'item_size_max': 1048576,
 'maxbytes': 67108864,
 'maxconns': 1024,
 'maxconns_fast': False,
 'num_threads': 4,
 'num_threads_per_udp': 4,
 'oldest': 216734,
 'reqs_per_event': 20,
 'slab_automove': False,
 'slab_reassign': False,
 'stat_key_prefix': ':',
 'tcp_backlog': 1024,
 'tcpport': 11211,
 'udpport': 11211,
 'umask': 700,
 'verbosity': 0}]
>>> pprint.pprint(memcache.stats_items())
[{'1': {'age': 766,
 'evicted': 0,
 'evicted_nonzero': 0,
 'evicted_time': 0,
 'evicted_unfetched': 0,
 'expired_unfetched': 0,
 'number': 3,
 'outofmemory': 0,
 'reclaimed': 0,
 'tailrepairs': 0}}]
>>> pprint.pprint(memcache.stats_sizes())
[[(64, 1), (96, 2)]]
>>> pprint.pprint(memcache.stats_slabs())
[{'active_slabs': 1,
 'slabs': {'1': {'cas_badval': 49,
 'cas_hits': 49,
 'chunk_size': 80,
 'chunks_per_page': 13107,
 'cmd_set': 5778,
 'decr_hits': 49,
 'delete_hits': 49,
 'free_chunks': 13104,
 'free_chunks_end': 0,
 'get_hits': 681,
 'incr_hits': 49,
 'mem_requested': 201,
 'total_chunks': 13107,
 'total_pages': 1,
 'touch_hits': 98,
 'used_chunks': 3}},
 'total_malloced': 1048560}]

How to delete(),
flush_all(), and
close() the connection:

>>> memcache.delete('foo')
>>> memcache.flush_all()
>>> memcache.close()

Object Documentation

	
class memcached2.Memcache(servers, value_wrapper=None, selector=None, hasher=None, server_pool=None)

	Create a new memcache connection, to the specified servers.

The list of servers, specified by URL, are consulted based on the
hash of the key, effectively “sharding” the key space.

This is a low-level memcache interface. This interface will raise
exceptions when backend connections occur, allowing a program full
control over handling of connection problems.

Example:

>>> from memcached2 import * # noqa
>>> mc = Memcache(['memcached://localhost:11211/'])
>>> mc.set('foo', 'bar')
>>> mc.get('foo')
'bar'

Extensive examples including demonstrations of the statistics output
is available in the documentation for
Memcache Examples

	Parameters:	
	servers (list) – One or more server URIs of the form:
“memcache://hostname[:port]/”

	value_wrapper (ValueSuperStr or
compatible object.) – (None) This causes values returned to be
wrapped in the passed class before being returned. For example
ValueSuperStr implements many useful
additions to the string return.

	selector (SelectorBase) – (None) This code implements the server selector
logic. If not specified, the default is used. The default
is to use SelectorFirst if only one
server is specified, and
SelectorRehashDownServers
if multiple servers are given.

	hasher (HasherBase) – (None) A “Hash” object which takes a key and returns
a hash for persistent server selection. If not specified, it
defaults to HasherZero if there is only
one server specified, or HasherCMemcache
otherwise.

	server_pool (ServerPool object.) – (None) A server connection pool. If not
specified, a global pool is used.

	
add(key, value, flags=0, exptime=0)

	Store, but only if the server doesn’t already hold data for it.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (str) – Value stored in memcache server for this key.

	flags (int (32 bits)) – If specified, the same value will be provided on
get().

	exptime (int) – If non-zero, it specifies the expriation time, in
seconds, for this value.

	
append(key, value)

	Store data after existing data associated with this key.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (str) – Value stored in memcache server for this key.

	
close()

	Close the connection to all the backend servers.

	
decr(key, value=1)

	Decrement the value for the key, treated as a 64-bit unsigned value.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (int (64 bit)) – A numeric value (default=1) to add to the existing value.

	Returns:	int – (64 bits) The new value after the decrement.

	Raises:	NotFound,
NonNumeric, NotImplementedError

	
delete(key)

	Delete the key if it exists.

	Parameters:	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	Returns:	Boolean indicating if key was deleted.

	Raises:	NotImplementedError,
NoAvailableServers

	
flush_all()

	Flush the memcache servers.

Note

An attempt is made to connect to all backend servers
before running this command.

	Raises:	NotImplementedError

	
get(key, get_cas=False)

	Retrieve the specified key from a memcache server.

	Parameters:	
	key (str) – The key to lookup in the memcache server.

	get_cas (bool) – If True, the “cas unique” is queried and the return
object has the “cas_unique” attribute set.

	Returns:	String, or “value_wrapper” as specified during object
creation such as ~memcached2.ValueSuperStr.

	Raises:	NoValue, NotImplementedError,
NoAvailableServers

	
incr(key, value=1)

	Increment the value for the key, treated as a 64-bit unsigned value.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (int (64 bit)) – A numeric value (default=1) to add to the existing value.

	Returns:	int – (64 bits) The new value after the increment.

	Raises:	NotFound,
NonNumeric, NotImplementedError

	
prepend(key, value)

	Store data before existing data associated with this key.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (str) – Value stored in memcache server for this key.

	
replace(key, value, flags=0, exptime=0)

	Store data, but only if the server already holds data for it.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (str) – Value stored in memcache server for this key.

	flags (int (32 bits)) – If specified, the same value will be provided on
get().

	exptime (int) – If non-zero, it specifies the expriation time, in
seconds, for this value.

	
set(key, value, flags=0, exptime=0, cas_unique=None)

	Set a key to the value in the memcache server.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	value (str) – Value stored in memcache server for this key.

	flags (int (32 bits)) – If specified, the same value will be provided on
get().

	exptime (int) – If non-zero, it specifies the expriation time, in
seconds, for this value.

	cas_unique (int (64 bits)) – If specified as the 64-bit integer from
get() with cas_unique=True, the
value is only stored if the value has not been updated since
the get() call.

	
stats()

	Get general statistics about memcache servers.

Examples of the results of this function is available in the
documentation as
Memcache Statistics Examples

Note

An attempt is made to connect to all servers before issuing
this command.

	Returns:	list –
The statistics data is a dictionary of key/value pairs representing
information about the server.This data is returned as a list of statistics, one item for
each server. If the server is not connected, None is returned
for its position, otherwise data as mentioned above.

	
stats_items()

	Get statistics about item storage per slab class from the
memcache servers.

Examples of the results of this function is available in the
documentation as
Memcache Statistics Examples

Note

An attempt is made to connect to all servers before issuing
this command.

	Returns:	list –
The statistic information is a dictionary keyed by the “slab
class”, with the value another dictionary of key/value pairs
representing the slab information.This data is returned as a list of statistics, one item for
each server. If the server is not connected, None is returned
for its position, otherwise data as mentioned above.

	
stats_settings()

	Gets statistics about settings (primarily from processing
command-line arguments).

Examples of the results of this function is available in the
documentation as
Memcache Statistics Examples

Note

An attempt is made to connect to all servers before issuing
this command.

	Returns:	list –
The statistic information is a dictionary of key/value pairs.This data is returned as a list of statistics, one item for
each server. If the server is not connected, None is returned
for its position, otherwise data as mentioned above.

	
stats_sizes()

	Get statistics about object sizes.

Examples of the results of this function is available in the
documentation as
Memcache Statistics Examples

Warning

This operation locks the cache while it iterates over all
objects. Returns a list of (size,count) tuples received
from the server.

Note

An attempt is made to connect to all servers before issuing
this command.

	Returns:	list –
Each statistic is a dictionary of of size:count where the size is
rounded up to 32-byte ranges.This data is returned as a list of statistics, one item for
each server. If the server is not connected, None is returned
for its position, otherwise data as mentioned above.

	
stats_slabs()

	Gets information about each of the slabs created during memcached
runtime. Returns a dictionary of slab IDs, each contains a dictionary
of key/value pairs for that slab.

Examples of the results of this function is available in the
documentation as
Memcache Statistics Examples

Note

An attempt is made to connect to all servers before issuing
this command.

	Returns:	list –
The statistic information is a dictionary keyed by the “slab
class”, with the value another dictionary of key/value pairs
representing statistic information about each of the slabs
created during the memcace runtime.This data is returned as a list of statistics, one item
for each server. If the server is not connected, None is
returned for its position, otherwise data as mentioned above.

	
touch(key, exptime)

	Update the expiration time on an item.

	Parameters:	
	key (str) – Key used to store value in memcache server and hashed to
determine which server is used.

	exptime (int) – If non-zero, it specifies the expriation time, in
seconds, for this value. Note that setting exptime=0 causes the
item to not expire based on time.

	Raises:	NotFound, NotImplementedError,
NoAvailableServers

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	python-memcached2 0.1 documentation

Low-Level ServerConnection() Interface

	
class memcached2.ServerConnection(uri)

	Low-level communication with the memcached server.

Data should be passed in as strings, and that is converted to bytes
for sending to the backend, encoded as ASCII, if necessary. Data
returned is likewise converted from bytes, also encoded as ASCII,
if necessary.

This implments the connection to a server, sending messages and reading
responses. This is largely intended to be used by other modules in the
memcached2 module such as Memcache() rather than
directly by consumers.

Note that this class buffers data read from the server, so you should
never read data directly from the underlying socket, as it may
confuse other software which uses this interface.

	Parameters:	uri (str) – The URI of the backend server.

	
connect()

	Connect to memcached server.

If already connected, this function returns immmediately. Otherwise,
the connection is reset and a connection is made to the backend.

	Raises:	UnknownProtocol

	
consume_from_buffer(length)

	Retrieve the specified number of bytes from the buffer.

	Parameters:	length (int) – Number of bytes of data to consume from buffer.

	Returns:	str – Data from buffer.

	
parse_uri()

	Parse a server connection URI.

Parses the uri attribute of this object.

Currently, the only supported URI format is of the form:

	memcached://<hostname>[:port]/ – A TCP socket connection to the host, optionally on the specified port. If port is not specified, port 11211 is used.

	Returns:	dict – A dictionary with the key protocol and other
protocol-specific keys. For memcached protocol the keys
include host, and port.

	Raises:	InvalidURI

	
read_length(length)

	Read the specified number of bytes.

	Parameters:	length (int) – Number of bytes of data to read.

	Returns:	str – Data read from socket. Converted from bytes
(as read from backend) with ASCII encoding, if necessary.

	Raises:	ServerDisconnect

	
read_until(search='\r\n')

	Read data from the server until “search” is found.

Data is read in blocks, any remaining data beyond search is held
in a buffer to be consumed in the future.

	param search:	Read data from the server until search is found.
This defaults to ‘

	‘, so it acts like readline().

	

	type search:	str

	returns:	str – Data read, up to and including search. Converted
from bytes (as read from backend) with ASCII encoding, if
necessary.

	raises:	ServerDisconnect

	
reset()

	Reset the connection.

Flushes buffered data and closes the backend connection.

	
send_command(command)

	Write an ASCII command to the memcached server.

	Parameters:	command (str) – Data that is sent to the server. This is converted
to a bytes type with ASCII encoding if necessary for sending
across the socket.

	Raises:	ServerDisconnect

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	python-memcached2 0.1 documentation

python-memcached2 Exceptions

Overview

The classes that throw exceptions all tend to raise exceptions that are
children of the MemcachedException. For storage-related exceptions, they
are children of StoreException, and for retrieval they are children of
RetrieveException.

If you use the exception-exposing interfaces (“Memcache()”), will need to
catch these exceptions as part of your code. They are thrown on
exceptional conditions, read the description of the exceptions for details
on when they may be thrown.

In specific error cases that likely indicate bugs in the python-memcached2
module, or where the server replies with unexpected data, the
NotImplementedError is raised. These situations are extremely unusual and
almost certainly should be reported to the developers of either this
python-memcached2 module or the developers of the memcached server you are
using. You probably don’t want to catch these

Exceptions

	
class memcached2.MemcachedException

	Base exception that all other exceptions inherit from.
This is never raised directly.

	
class memcached2.UnknownProtocol

	An unknown protocol was specified in the memcached URI.
Sublcass of MemcachedException.

	
class memcached2.InvalidURI

	An error was encountered in parsing the server URI.
Subclass of MemcachedException.

	
class memcached2.ServerDisconnect

	The connection to the server closed.
Subclass of MemcachedException.

	
class memcached2.NoAvailableServers

	There are no servers available to cache on, probably because all
are disconnected. This exception typically occurs after the code
which would do a reconnection is run.
Subclass of MemcachedException.

	
class memcached2.StoreException

	Base class for storage related exceptions. Never raised directly.
Subclass of MemcachedException.

	
class memcached2.MultiStorageException(message=None, results={})

	During a SET operation the server returned CLIENT_ERROR. This is
probably due to too long of a key being used. Subclass of
StoreException.

	
class memcached2.NotStored

	Item was not stored, but not due to an error. Normally means the
condition for an “add” or “replace” was not met.. Subclass of
StoreException.

	
class memcached2.CASFailure

	Item you are trying to store with a “cas” command has been modified
since you last fetched it (result=EXISTS). Subclass of
StoreException.

	
class memcached2.CASRefreshFailure

	When trying to refresh a CAS from the memcached, the retrieved value
did not match the value sent with the last update. This may happen if
another process has updated the value. Subclass of
CASFailure.

	
class memcached2.NotFound

	Item you are trying to store with a “cas” command does not exist..
Subclass of StoreException.

	
class memcached2.NonNumeric

	The item you are trying to incr/decr is not numeric..
Subclass of StoreException.

	
class memcached2.RetrieveException

	Base class for retrieve related exceptions. This is never raised
directly.. Subclass of MemcachedException.

	
class memcached2.NoValue

	Server has no data associated with this key..
Subclass of RetrieveException.

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	python-memcached2 0.1 documentation

 Python Module Index

 m

 			

 		
 m	

 	
 	
 memcached2	

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	python-memcached2 0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	add() (memcached2.Memcache method)

 	

 	append() (memcached2.Memcache method)

C

 	

 	CASFailure (class in memcached2)

 	CASRefreshFailure (class in memcached2)

 	close() (memcached2.Memcache method)

 	

 	connect() (memcached2.ServerConnection method)

 	consume_from_buffer() (memcached2.ServerConnection method)

D

 	

 	decr() (memcached2.Memcache method)

 	

 	delete() (memcached2.ExceptionsAreMissesMemcache method)

 	

 	(memcached2.Memcache method)

E

 	

 	ExceptionsAreMissesMapping (class in memcached2)

 	

 	ExceptionsAreMissesMemcache (class in memcached2)

F

 	

 	flush_all() (memcached2.Memcache method)

G

 	

 	get() (memcached2.ExceptionsAreMissesMemcache method)

 	

 	(memcached2.Memcache method)

H

 	

 	hash() (memcached2.HasherBase method)

 	

 	(memcached2.HasherCMemcache method)

 	(memcached2.HasherZero method)

 	HasherBase (class in memcached2)

 	

 	HasherCMemcache (class in memcached2)

 	HasherZero (class in memcached2)

I

 	

 	incr() (memcached2.Memcache method)

 	

 	InvalidURI (class in memcached2)

M

 	

 	Memcache (class in memcached2)

 	memcached2 (module)

 	

 	MemcachedException (class in memcached2)

 	MultiStorageException (class in memcached2)

N

 	

 	NoAvailableServers (class in memcached2)

 	NonNumeric (class in memcached2)

 	NotFound (class in memcached2)

 	

 	NotStored (class in memcached2)

 	NoValue (class in memcached2)

P

 	

 	parse_uri() (memcached2.ServerConnection method)

 	

 	prepend() (memcached2.Memcache method)

R

 	

 	read_length() (memcached2.ServerConnection method)

 	read_until() (memcached2.ServerConnection method)

 	replace() (memcached2.Memcache method)

 	

 	reset() (memcached2.ServerConnection method)

 	RetrieveException (class in memcached2)

S

 	

 	select() (memcached2.SelectorBase method)

 	

 	(memcached2.SelectorConsistentHashing method)

 	(memcached2.SelectorFirst method)

 	(memcached2.SelectorFractalSharding method)

 	(memcached2.SelectorRehashDownServers method)

 	SelectorBase (class in memcached2)

 	SelectorConsistentHashing (class in memcached2)

 	SelectorFirst (class in memcached2)

 	SelectorFractalSharding (class in memcached2)

 	SelectorRehashDownServers (class in memcached2)

 	send_command() (memcached2.ServerConnection method)

 	ServerConnection (class in memcached2)

 	ServerDisconnect (class in memcached2)

 	

 	set() (memcached2.ExceptionsAreMissesMemcache method)

 	

 	(memcached2.Memcache method)

 	set_multi() (memcached2.ExceptionsAreMissesMemcache method)

 	stats() (memcached2.Memcache method)

 	stats_items() (memcached2.Memcache method)

 	stats_settings() (memcached2.Memcache method)

 	stats_sizes() (memcached2.Memcache method)

 	stats_slabs() (memcached2.Memcache method)

 	StoreException (class in memcached2)

T

 	

 	touch() (memcached2.Memcache method)

U

 	

 	UnknownProtocol (class in memcached2)

V

 	

 	ValueDictionary (class in memcached2)

 	

 	ValueSuperStr (class in memcached2)

 Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/plus.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		python-memcached2 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Sean Reifschneider.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

